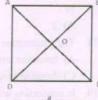
MODEL TEST PAPER ENTRANCE EXAMINATION FOR ADMISSION TO B.Sc. (HONS.) CHEMISTRY, PHYSICS AND MATHEMATICS -2018

General Instructions for Students

- Every candidate should carry his/her valid Roll No. cum Admit Card to the Entrance Test. No candidate without the valid Roll No. cum Admit Card will be allowed to enter the examination centre.
- The question paper will be of One & Half Hours duration and will comprise of Seventy Five Multiple Choice Questions of One mark each.
- 3. There will be three sections, viz; Physics, Chemistry, Biology OR Mathematics.
- The candidates with 10 + 2 (Medical) will opt the section of Biology while the candidates with 10+2 (Non-Medical) will opt the Mathematics Section.
- The candidate has to mark the right option against the question number in the OMR sheet with black pen. The circles marked with pencil or blue pen will not be marked.
- 6. There will be no negative marking.
- 7. The OMR must be handed over to the Room Supervisor even if candidate has not filled any option.
- 8. No candidate will be allowed to leave the examination hall before two hours.
- 9. Don't write/make any identification marks(s)/religious symbols/slogan(s) on the answer books.
- The candidate must ensure that his OMR has been duly stamped.
- 11. Please ensure that you have signed the attendance sheet.
- Mobile Phones and other electronic gadgets such as Bluetooth etc. are strictly prohibited in the Examination Centre.

PHYSICS

			N. Carlotte, Section.	
1	. While using an electric bulb the reflecto	r for stre	eet lighting should be	a
	A) Concave mirror		Convex mirror	
	C) Cylinderical mirror	D)	Plane mirror	
2	. Sunlight filtering through a tree often m	akes cin	cular patches on the g	round because :
	 A) The space through which light pene 	trates is	round	
	B) The sun is round			
	 C) Light is transmitted through wave m 	otion		
	D) Due to diffraction of light			
3	 A ray of light passing through a prism hangle of incidence is double the angle of 	aving re refraction	fractive index of 1.41- on within the prism, the	4 suffers minimum deviation. If the ne angle of prism is :
	A) 30° B) 45°		C) 60°	D) 90°
4	. A diode as rectifier converts :			militarina managaran di sa
	A) AC into DC	B)	DC into AC	
	C) Varying DC into constant DC	D)	High voltage into lov	w voltage
5.	 A metal surface ejects electrons when hi will also be ejected when the surface is l 		en light but none whe	n hit by yellow light. The electrons
	A) Red light	B)	Blue light	
	C) Heat rays	D)	Infrared light	
6.	In terms of magnetic properties, oxygen	belongs	to:	
	A) Non Magnetic Materials	B)	Ferromagnetic Mate	rials
	C) Paramagnetic Materials		Diamagnetic Materia	
7.	A lens behaves as converging lens in air is:	and div	erging lens in water.	The refractive index of the material
	A) Equal to unity	B)	Equal to 1.33	
	C) Between unity and 1.33		Greater than 1.33	
8.	The resolving power of the telescope de	pends u	pon:	
	A) The focal length of the eye lens		The focal length of the	
	C) The length of the telescope tube		10.00	ctive length
9,	Which of the following have maximum w	10	th?	
	A) X rays B) Radio waves		C) UV rays	D) IR rays
10.	Two coherent sources of intensity I_1 and the interference pattern is:	1 I ₂ proc	luce an interference p	nattern. The maximum intensity in
	A) I ₁ + I ₂		$I_1^2 + I_2^2$	
	C) $(I_1 + I_2)^2$	D)	$(\sqrt{I_1}+\sqrt{I_2})^2$	


11. The point charges 4q, -2q, +q, -3q are paced at the corners of square of side a as shown in figure the potential at the point O is:

B)
$$\frac{1}{4\pi\varepsilon_0} \left(\frac{10q}{a} \right)$$

D)
$$\frac{1}{4\pi\varepsilon_0} \left(\frac{2q}{a}\right)$$

12. An electric dipole of moment p is placed normal to the lines of force of electric field E, then work done in deflecting it through 180° is

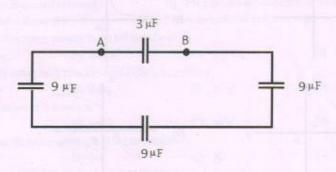
B) +2pE

C) -2pE D) Zero

13. There is a solid sphere of radius R of metal having uniformly distributed charge. What is relation between electric field E and distance r from centre (r>R)?

A) $E \propto r^{-2}$ B) $E \propto r^{-1}$ C) $E \propto r$

14. Which of the following is NOT the property of a metallic substance?

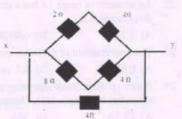

A) Good conductor

B) Opaque to light

C) Non crystalline

D) Involve non directional bonds

15. The equivalent capacitance between A and B in the following figure is:



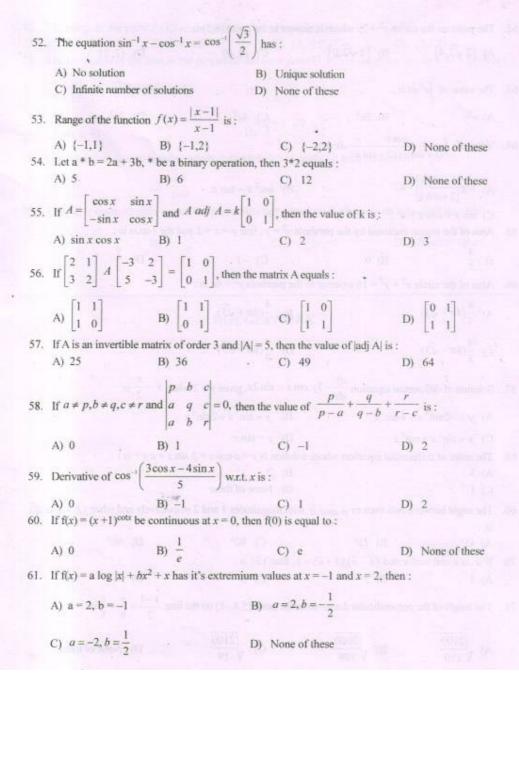
A) 51/30 μF

B) 6 μF

C) 30 µF

- D) 12 μF
- 16. Find the equivalence resistance in the point x and y:
 - A) 2Ω
 - B) 8 Ω
 - C) 6Ω
 - D) 4Ω

	be :	resistance, Each rov	v is to contain e	equal number of	cells. The number of rows she	ould
	A) 2	B) 4	C)	5	D) 10	
18.	The temperature a	at which thermoelectr	ric power of the	rmocouple is ze	ero is called :	
	A) Inversion tem			Neutral tempe		
	C) Junction temp	erature	D)	Null temperate	ire	
19.	In connection with	h chemical effects of	current, Farada	ys constant is e	qual to:	
	A) Electrochemic	al equivalent/chemica	al equivalent			
	B) Electrochemic	al equivalent/gram eq	quivalent			
	C) Gram equivale	ent/Electrochemical e	quivalent			
	D) Chemical equi	valent/Electrochemic	al equivalent			
20.	The relationship b	between \vec{B} , \vec{I} and \vec{I}	\vec{H} is			EI . S
	A) $\vec{B} = \mu_0 (\vec{I} + \vec{h})$	\vec{B}) $\vec{B} = \mu_0 \vec{H}$	C)	$\overrightarrow{B} = \mu_0 \overrightarrow{I}$	$D) \overrightarrow{B} = \frac{(\overrightarrow{I} + \overrightarrow{H})}{\mu_0}$	
21,		owing represent corn he distance from the			netic filed B at an axial point	for
	circular con with t	ne distance nom me	centre of circus	ar con :		
	B					
		A STATE OF THE PARTY OF THE PAR				
	4)	1	D)			
	A) 0	· ·	D) -	0	X.	
	В.			В,		
	/			1		
	c)	x	D) -	-/-	x	
		0 "		/ 0		
	-			-		
22.		nge 1A has a internal	resistance of 0.	9 Ω. To extend	the range upto 10A, the necess	ary
- 10	shunt required is					
	Α) 0.1 Ω	B) 0.01Ω	C)	0.9 Ω	D) 1Ω	
23.	The time constant	of the series combina	ition of inducto	r 5 H and resista	ance 10 Ω is	
	A) 0.02 sec	B) 0.5 sec		2 sec	D) 50 sec	
	A ston up tennefor	mer operating on 230	V line supplies	s current to the	oad 2A. The ratio of primary a	and
24.	secondary winding	is 1:25. Determine th	he primary curr	ent:		


17. 100 cells each of emf 5V and internal resistance 1 ohm are to be arranged so as to produce maximum

25.	The order of the size of the nucleus and	1 Bohr radius of an atom respect B) 10 ⁻¹⁴ m, 10 ⁻⁸ m	ively are
	10.76 N. C.	D) 10 ⁻¹¹ m, 10 ⁻¹⁰ m	
	C) 10 ⁻²⁰ m, 10 ⁻¹⁰ m	D) 10 ···m, 10 ··· m	
		CHEMISTRY	
26	Name of the phenomenon wherein med	chanical stress causes the produc	tion of electricity is?
	A) Pyroelectric effect	B) Photoelectric effect	
	C) Piezoelectric effect	D) Ferroelectric effect	
27.	For two solutions of same concentration		C is twice that at:
-		C) 227°C D)	17°C
28.	When lead storage battery is charged		
est.	A) Lead dioxide dissolves		
	B) Sulphuric acid is regenerated		
	C) Lead electrode becomes coated wi	th lead sulphate	
	D) The concentration of H2SO4 decr		
29.	The rate constant for a chemical reaction of A is reduced to half?	on A \rightarrow B is 0.25 s ⁻¹ . What will	be rate constant if concentration
	A) 0.25 s ⁻¹ B) 0.30 s ⁻¹	C) 0.075 s ⁻¹	D) 2.25 s ⁻¹
30.	Butter is a colloid form in which:		
	A) Fat is dispersed in casein	B) Fat globules are dispe	
	C) Water is dispersed in fat	D) Suspension of casein	in water
31.	The chief impurity present in the red be	nuxite ore is:	
	A) SiO ₂ B) Fe ₂ O ₃	C) K ₂ SO ₄	D) NaF
32.	HCOOH reacts with concentrated H2	SO ₄ to produce	
	A) CO B) CO ₂	C) SO ₂	D) SO ₃
33.	Hybridization of S in SO ₃ is		12. 2
	A) sp ² B) sp ³	C) sp ³ d	D) sp ³ d ²
34.	The most abundant noble gas in the at	mosphere is :	
	A) He B) Ne	C) Xe	D) Ar
35.	The shape of XeOF2 on the basis of V	SPER theory is	
	A) Sea saw	B) V-shaped	
	C) Triagonal planar	D) T-shaped	
36.	Which of the following transition meta-	d shows only +3 oxidation state?	
	A) Ce B) Pt	C) Gd	D) Ni
37.	IUPAC name of K ₃ [Fe(CN) ₆] is :		
25000	A) Potassium hexacyanoferrate (II)	B) Potassium hexacyano	oferrate (III)
	C) otassiumhexacyanoiron (II)	D) Potassium hexacyano	

38. Which is a naturally occurring polymer?	
A) Nylon B) Protein C) Bak	telite D) Terylene
39. Which of the following does not give a silver mirror test with	
A) Lactose B) Sucrose C) Gluc	
40. α and β Glucose differ with respect to position of OH grou	
A) Carbon α and β to aldehyde group B) Carbon nu	
C) Carbon number 1 D) All the car	
41. Denaturation of proteins effect its:	Bally emalsony! (/L
A) Tertiary structure B) Secondary	v structure
C) Both secondary and tertiary structure D) Only prim	
42. o-Nitrophenol is steam volatile while p-nitrophenol is not. T	
A) Intra-molecular H-bonding in p-nitrophenol.	1110 10 1010 10
 B) Intra-molecular H-bonding in σ-nitrophenol. 	
C) Inter-molecular H-bonding in o-nitrophenol.	
D) Higher acidic nature of o-nitrophenol.	
 p-Bromophenol can be prepared from phenol by reaction w. 	oith.
C) Br ₂ in presence of FeCl ₃ D) None of the	sence of sunlight
Reaction of ethylamine with chloroform in alcoholic KOH p	
	5NC D) C ₂ H ₅ CN
 When aniline is treated with bromine water, it yields: a) o-bromoaniline b) p-bromoan 	
C) Both (A) and (B) D) 2,4,6-tribro	
46. When a mixture of benzaldehyde and formaldehyde is tre- product is:	ated with concentrated NaOH solution, the
A) Sodium benzoate and benzyl alcohol	
B) Sodium benzoate and methyl alcohol	
C) Sodium formate and benzyl alcohol	
D) Sodium formate and methyl alcohol	S. H. SERV
47. Phenol is formed by decarboxylation of:	
A) Benzoic acid B) Salicyclic a	neid
C) Phthalic acid D) All of these	
48. Which of the following reagents can distinguish C2N5OH fro	
A) H ₂ O B) NH ₃ C) I ₂ + I	
49. Bakelite is obtained from phenol by condensation reaction w	
A) Ethanal B) Methanal	We make a partial and a second and a
C) Vinyl chloride D) Ethylene gly	vcol

50	A compound 'X' on heating with soda lime gives ethane, X is:							
	A) Ethanoic acid	B)	Propanoic acid					
	C) Methanoic acid	D)	Ethyl acetate					
		BIO	LOGY					
51	The endosperm cells in angiosperms	ane :						
	A) Haploid B) Diploid		C) Triploid	D) Tetraploid				
52	. The semi dwarf wheat which was in	strumental i	n increasing wheat produ	ction was developed by:				
	A) Paul Ehlrick	B)	Kurien					
	C) Edward Jenner	D)	Norman E. Borlaugh					
53	Anthesis is:							
	A) Formation of Pollen	B)	Development of Anther	Total for building and				
	C) Reception of Pollen by stigmas	D)	Opening of flower bud					
54	An organic substance which cannot	be degraded	by any enzyme and extra	eme of environment:				
	A) Sporopollenin B) Lignin		C) Cuticle	D) Cellulose				
55	Enzyme required for polymerase cha	in reaction	is:					
	A) RNA polymerase	B)	Ribonuclease					
	C) Taq polymerase	D)	Endonuclease					
56	Who discovered jumping gene in Ma	iize:						
	A) Khorana	B)	Morgan					
	C) Mc Clintock	D)	Beadle and Tatum					
57	Nucleosome contains :							
	A) Only histones	B)	Both DNA and histones					
	C) Only DNA	D)	Both DNA and RNA					
58	DNA synthesis during replication:							
	A) Discontinuous	B)	Continuous					
	C) Semi-discontinuous	D)	None of above					
59	The term molecular scissors refers to):						
	A) DNA polymerases	B)	RNA polymerases					
	C) Restriction endonucleases	D)	DNA ligases					
60	In tissue culture shoot system is indu	iced by:						
	A) IAA B) ABA		C) Kinetin	D) GA3				
61	First transgenic plant released for co	mmercial us	se was :					
	A) Bt Cotton	B)	Tobacco					
	C) Golden rice	D)	Solan gola					
62	Restriction enzymes are used to cut							
	Single stranded RNA	B)	Double stranded DNA					
	C) Single stranded DNA	D)	Double stranded RNA					

63.	DNA parts which car	n swit	ch their position	ns are :				
	A) Cistrons		Transposons			Introns	D)	None of these
64.	Which extra embryor	nic m	embrane in hun	nans p	revent	desiccation of the em	ibryo i	nside the uterus:
	A) Allantois		Yolk sac			Amnion		Chorion
55.	Allopatric speciation	is due	to geographic	al sepa	ration	of:		
	A) Species		Population			Plants	D)	Animals
56.	Entire alimentary car	nal car	be regenerated	by:				
	A) Amphibians		Birds		(C)	Fish	D)	Sea cucumber
7.	Effect of alcohol is:	2 7 11 110						Lake wer //
	A) Liver Cirrhosis			B)	Kidne	cy Failure		
	C) Insomnia			D)	All of	f the above		
58.	The amount and dist	ributio	n of yolk in egg	affect	is:			
	A) Number of blast					m of cleavage		
	C) Fertilization			D)	Form	ation of zygote		
59.	Lactation in sterile co	ows is	induced by:					
	A) Stilbesterol			B)	Vitan	nin B12		
	C) Gonadotropin			D)	LH			
70.	A sex linked disorde	ris:						
	A) Albinism			B)	Pheny	yłketonuria		
	C) Haemophilia			D)	Sickl	e cell anaemia		
71.	The name "honey sta	omach	" in bees is app	olied fo	or c			
	A) Crop	B)	Stomach		C)	Pharynx	D)	Abdomen
12.	Mammals have origi	nated	from which of t	he foll	owing	10-		
	A) Pisces	B)	Amphibia		C)	Reptilia	D)	Aves
73.	Widal test is for:							
	A) Malaria	B)	Typhoid		C)	Pneumonia	D)	Jaundice
74.	Which immunoglob	ulin is	present in moth	er's m	ilk:			
	A) IgA		IgD			IgG	D)	IgE
75.	Lake ecosystem is							
	A) Artificial	B)	Natural		C)	Both (A) and (B)	D)	None
					OR	m 4-2		
					EMA			
51.	If $f: R \to R$ is a fu	inction	defined by f(x	() = 10	x - 7.	If $g = f^{-1}$, then $g(x)$	-	
	A) $\frac{1}{10x-7}$		$\frac{1}{10x+7}$		270	$\frac{x+7}{10}$	Di	x-7
	41	D			()		1.71	10

		The value of $\int_{0}^{a} e^{\int x} dx$ is			
		The value of $\int e^{ix} dx$ is			
		A) e ²	B) 2e ²	C) 4e ²	D) 3e ²
	64.	Value of $\int \frac{\cos x}{(1+\sin x)}$	$\frac{\sin x}{(2+\sin x)} dx$ is:	0 . 151-10	(II) - IA
		A) $\log \left \frac{1 + \sin x}{2 + \sin x} \right + c$		B) $\sec^2 x - \tan x$	
		C) $\sin x + \cos x + c$		D) 0	
3	65.	Area of the region en	closed by the parabo	$a \ln x^2 = y$, line $y = x + 2$ and the x	-axis is :
					0
		a) $\frac{4}{7}$	B) 0	C) -1	D) $\frac{9}{2}$
	66,	Area of the circle x^2	$+y^2 = 16$ exterior to	the parabola $y^2 = 6x$ is:	
		A) $\frac{4}{3}(4\pi - \sqrt{3})$		B) $\frac{4}{3}(4\pi + \sqrt{3})$	
		C) $\frac{4}{3}(8\pi - \sqrt{3})$		D) $\frac{4}{3}(8\pi + \sqrt{3})$	
	67.	Solution of differentia	al equation $\frac{dy}{dx} - 3y$ c	ot $x = \sin 2x$, given $y = 2$ when $x = 2$	$=\frac{\pi}{2}$ is
		A) $y = -2\sin^2 x + 4\sin^2 x + 4\sin$	sin³ x	$B) y = \sin^3 x + 2\sin^2 x$	
		C) $y = \sin^2 x + \cot^2 x$		D) y = tan x	
	60			olution is $y = a \cos x + b \sin x + c$	e-x is:
	uo.	A) 3	um equation whose s	B) 2	
1		C) 1		D) None of these	
	69.	2000 400 1000	vo vectors \vec{a} and \vec{b}	with magnitudes 1 and 2 respective	ely and when $ \vec{a} \times \vec{b} = \sqrt{3}$
		is:		THE REAL PROPERTY OF	
		A) 45°	B) 75°	C) 90°	D) 60°
	70.	If \vec{a} is a unit vector a	and $(\vec{x} - \vec{a}).(\vec{x} + \vec{a}) =$	8, then $ \vec{x} $ is:	
		A) 1	B) 2	C) 3	D) 4
	71.	The length of the per	pendicular drawn from	m the point (5,4,-1) on the line $\frac{x}{2}$	$\frac{-1}{2} = \frac{y}{9} = \frac{z}{5}$ is:
		A) $\sqrt{\frac{2109}{110}}$	B) $\sqrt{\frac{2020}{109}}$	C) $\sqrt{\frac{2100}{19}}$	D) None of these

62. The point on the curve $x^2 = 2y$ which is nearest to the point (0,5) is:

72. The image of the point P (1,3,4) in the plane 2x - y + z + 3 = 0 is:

73. The coordinates of the foot of the perpendicular from point (1,1,2) to the plane 2x-2y+4z+5=0 is:

A)
$$\left(\frac{-1}{12}, \frac{25}{12}, \frac{-1}{6}\right)$$

B)
$$\left(\frac{1}{6}, \frac{25}{13}, -1\right)$$

D)
$$\left(\frac{-1}{7}, \frac{29}{13}, 0\right)$$

74. Eight coins are thrown simultaneously the probability of getting at least six heads is

A)
$$\frac{37}{256}$$

B)
$$\frac{19}{208}$$

C)
$$\frac{1}{3}$$

D)
$$\frac{19}{29}$$

75. A fair dice is tossed eight times. The probability that a third six is observed on the eighth throw is

A)
$$\frac{{}^{7}C_{2} \times 5^{5}}{6^{7}}$$

B)
$$\frac{{}^{7}C_{2} \times 5^{5}}{6^{8}}$$

A)
$$\frac{{}^{7}C_{2} \times 5^{5}}{6^{7}}$$
 B) $\frac{{}^{7}C_{2} \times 5^{5}}{6^{8}}$ C) $\frac{{}^{7}C_{2} \times 5^{5}}{6^{6}}$